RL-TR-96-255
Final Technical Report
March 1997

SUPPORTING A SECURE
DBMS ON THE DTOS
MICROKERNEL (SDDM)

Secure Computing Corporation

Spence Minear, Dick O’'Brien, and Lynn Te Winkel

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

1 99 7 05 2 0 1 7 5 G AT TRETEGTED @)

Copyright 1996 Secure Computing Colporation
This material may be reproduced by or for the U.S. Government pursuant o the copyright license
under clause at DFARS 252.227-7013 (October 1988).

Rome Laboratory

This report has been reviewed by the Rome Laboratory Public Affairs Office
(PA) and is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RL-TR-96-255 has been reviewed and is approved for publication.

“ciisr b4 ZL);:@;

MARY L. DENZ
Project Engineer

APPROVED:

FOR THE COMMANDER:
JOHN A. GRANIERO, Chief Scientist
Command, Control, & Communications Directorate

If your address has changed or if you wish to be removed from the Rome Laboratory
mailing list, or if the addressee is no longer employed by your organization, please
notify RL/C3AB, 525 Brooks Road, Rome, NY 13441-4505. This will assist us in

maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices on a specific
document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approved

OMB No. 0704-0188

Public reporting burden for this coltection ot :nformation 1s estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

g 3 g the data ded, and <o and r g the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection af information, mcludmg suggestions for reduclng this burden, (o Washington Headquartery Services, Directorate for information Operations and Reports, 1215 Jetferson
Oavis Highway, Suite 1204, Arlington, VA 22202-4302, and t0 the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1997 Final Jul 95 - Aug 96
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS
C - F30602-95-C-0244
SUPPORTING A SECURE DBMS ON THE DTOS MICROKERNEL (SDDM) PE - 33401G
PR - 1068
6. AUTHOR(S) TA - 01
Spence Minear WU - Pl

Dick O'Brien
Lynn Te Winkel

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
. . REPORT NUMBER
Secure Computing Corporation
2675 Long Lake Road
Roseville, Mi 55113 N/A
9. SPONSQORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER
Rome Laboratory/C3AB

525 Brooks Road

13. ABSTRACT (Maximum 200 words)

RL-TR-96-255
Rome, NY 13441-4505
11. SUPPLEMENTARY NOTES
RL Project Engineer: Mary L. Denz/C3AB/315-330-3241
12a. DISTRIBUTION / AVAILABILITY ST'ATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

The problem addressed in this final technical report deals with hosting a secure
database management system (DBMS) on a security-~enhanced microkernel architecture.
This problem is considered from both an operational issues standpoint and a security
issues standpoint.

The operational issues address how well microkernel features meet the operatiomal
needs of a DBMS, Operational issues discussed include threaded execution, schedulers,
buffer managers and file systems, The three microkernels considered in this report
are Mach/DTOS, Flux/Fluke, and LOCK and LOCK6.

The security issues address how well microkernel security features can assist in
implementing a secure DBMS on a security-enhanced microkernel., Of particular interest
is how the DTCS access control mechanisms can be used to provide higher assurance for
DBMS access controls. Both relational and object-—oriented DBMSs are discussed.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Hultilevel Secure Database Management System, Microkernel, Mach, 59

DTOS, Flux/Fluke, Lock 16. PRICE CODE

17. SECURITY CLASSIFICATION | 18. SECURITY CLASSIFICATION | 19. SECURITY CLASSIFICATION | 20, LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE QF ABSTRACT

UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED SAR

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. £39-18

Abstract

This report documents the results of the Supporting a Secure DBMS on the DTOS Micro-
kernel (SDDM) contract, Contract Number F30602-95-C-0244, funded by Rome Laboratory.
The objective of the SDDM program was to investigate issues involved with supporting a dis-
tributed database management system (DBMS) on Secure Computing Corporation’s (SCC’s)

Distributed Trusted Operating System (DTOS) microkernel using the DTOS control mecha-
nisms.

Key words: DBMS, security, microkernel, operating system

LOCKserver™, LOCKstation™, NETCourier™, Security That Strikes Back™, Sidewinder™, and
Type Enforcement™ are trademarks of Secure Computing Corporation.

LOCK®, LOCKguard® LOCKix® LOCKout® and the padlock logo are registered trademarks of Secure
Computing Corporation.

All other trademarks, trade names, service marks, service names, product names and images mentioned
and/or used herein belong to their respective owners.

@© Copyright, 1996, Secure Computing Corporation. All Rights Reserved.

Contents

4.1 Microkernel Security Controls Lo

ii

1 Scope _ 1
1.1 Identification 1
1.2 ProgramOverview 1

1.2.1 Objectives Summary 1
1.2.2 ResultsSummary e 1
1.3 DocumentOVervIEW e 1

2 General Problem Description 3
2.1 Discussionof ProgramGoals 3
2.2 ProblemStatement 3
2.3 Technology Summary. 4

2.3.1 Microkernels 4
2.3.1.1 Mach. 5
2.3.1.2 DTOS 6
2.3.13 Flux/Fluke e 7
2.3.14 LOCKandLOCKSB 7

232 Database Systems. 8
2.3.21 Relational Database Systems 8
2.3.2.2 Object Oriented Database Systems 10

3 Microkernel Operational Issues and DBMSs 13

3.1 Operational Issues Summary 13
3.1.1 Threaded Execution 13
3.1.2 Schedulers 14
3.1.3 BufferManagers 14
3.1.4 File Systems L 14

3.2 Mach/DTOS 14
3.2.1 Threaded Execution, 15
3.2.2 Schedulers 15
3.2.3 BufferManagers 16
3.24 File Systems L 17

3.3 Flux/Fluke e 17
3.3.1 Threaded Execution 17
3.3.2 Schedulers 18
3.3.3 BufferManagers 18
3.34 FileSystems 18

34 LOCKG........ e e 18
3.4.1 Threaded Execution 19
3.42 Schedulers 19
3.4.3 BufferManagers e 19
3.4.4 FileSystems e 19

4 Microkernel Security Issues and DBMSs 20

20

4111 PortRight Transfer 21

411.2 Service Control e 21

412 DTOS e 22

4.1.2.1 Overview of DTOS Microkernel and Security Server Interaction . 22

4.1.2.2 DTOS Security Control 23

4.1.2.3 Additional Identifiers oo 26

41.2.4 Access Vectors e 26

4.1.2.5 Interface Extensions 27

4.1.3 LOCKB . . . o e e 28

4.2 Microkernel Security Controls Applied to DBMS Systems 30
4.2.1 Relational DBMSs 30

42.1.1 IBAC for Relational DBMSs 30

42.1.2 MAC for Relationai DBMSso 33

4.2.2 Object Oriented DBMSso 33

5 Lessons Learned and Future Directions 35
5.1 Lessons Learned Summaryo 35

52 Future Directions e 36
5.2.1 DBMS Development 36

5.2.2 Web-based DBMS Servers oo e 36

5.2.3 dava . . . e 36

6 Notes 39
6.1 ACTONYMS o ot it e 39

A Bibliography 41

iii

List of Figures

1 MachKernel Structure DT 6
2 DTOS Kernel and Security Server Interaction 23
3 Kernel Control Mechanisms 25
4 External Object Server Control 26
5 Access Vector Structure 27
6 DTOS Security Mechanisms. 30
7 DTOS Access Vector for IBAC Support 32
iv

Section 1

Scope

1.1 ldentification

This report documents the results of the Supporting a Secure DBMS on the DTOS Microkernel
(SDDM) contract, Contract Number F30602-95-C-0244, funded by Rome Laboratory.

1.2 Program Overview
1.2.1 Objectives Summary

The objective of the SDDM program was to investigate issues involved with supporting a
distributed database management system (DBMS) on Secure Computing Corporation’s
(SCC’s) Distributed Trusted Operating System (DTOS) microkernel using the DTOS control
mechanisms. The work made use of the preliminary design project done by MITRE
Corporation, the results of which are documented in MITRE's report, MLS Microkernel
DBMS Design Analysis [18].

1.2.2 Results Summary

The issues involved with supporting a DBMS on the DTOS microkernel were partitioned into
two areas: operational and security. The operational issues dealt mainly with standard
operating system support, such as scheduling, buffer management and file systems. DTOS,
LOCKS6 and Flux/Fluke were evaluated in four areas identified in the MITRE report relative
to their ability to provide the type of support in these areas that a DBMS needs. This
evaluation is contained in Section 3. The security issues dealt with using the standard DTOS
control mechanisms to help provide DBMS access control and considered how enforcement of
the DBMS security policy might be partitioned between DBMS controls and DTOS controls.
The results of this investigation are contained in Section 4.

1.3 Document Overview
The document structure is as follows:

» Section 1, Scope, defines the scope of the document and provides a program overview
and this overview description of the document.

» Section 2, General Problem Description, first discusses the SDDM program goals
and the general problem of hosting a DBMS on a microkernel architecture. It then gives
a technology summary which includes discussions on microkernels, including Mach,
DTOS, Flux/Fluke, and LOCK and LOCKS, and database systems, including relational
and object-oriented DBMSs.

s Section 3, Microkernel Operational Issues and DBMSs, describes operational issues
having to do with hosting a DBMS on a microkernel architecture. It includes discussions
of Mach/DTOS, Flux/Fluke, and LOCKS operational issues.

» Section 4, Microkernel Security Issues and DBMSs, describes security issues having
to do with hosting a DBMS on a microkernel architecture. It includes a discussion of
DTOS microkernel security controls, and then discusses how microkernel security
controls can be applied to DBMSs.

s Section 5, Lessons Learned and Future Directions, contains a summary of lessons
learned on the SDDM program, and discusses future directions of the technology
discussed in this report and possibilities for future work in the area of supporting a
secure DBMS on a microkernel system.

s Section 6, Notes, contains an acronym list.

» Appendix A, Bibliography, contains a bibliography of referenced documents.

Section 2

General Problem Description

This section discusses the general problem that the SDDM program focused on. It also gives a
technology summary of microkernels and DBMSs, providing information that is useful for
understanding the remainder of the report.

2.1 Discussion of Program Goals

The goal of the SDDM program was to investigate issues involved with supporting a
distributed database management system (DBMS) on Secure Computing Corporation’s
(SCC’s) Distributed Trusted Operating System (DTOS) microkernel using DTOS control
mechanisms. The SDDM work made use of a companion DBMS study and preliminary design
project done by MITRE Corporation.

The original objectives included:

» Investigating a minimal set of operating system modules that would need to be
implemented as servers on the DTOS microkernel to support MITRE’s DBMS design.

» Investigating how these servers would work together to enforce the overall security
policy of the DBMS.

= Describing how the DTOS security mechanisms can be used to enforce the individual
server policies.

After discussions with MITRE on their work, the focus of the first objective changed slightly
to discuss the ability of DTOS to support particular features that would benefit implementing
a DBMS. Rather than consider particular servers, this report then discusses general issues
involved with using the DTOS security mechanisms to support a DBMS application.

2.2 Problem Statement

The problem addressed in this report deals with hosting a secure DBMS system on a
security-enhanced microkernel architecture. This problem is considered from both an
operational issues standpoint (see Section 3) and a security issues standpoint (see Section 4).

The operational issues section addresses how well microkernel features meet the operational
needs of a DBMS (as identified by Stonebraker {25] and MITRE [18]). Operational issues
discussed include threaded execution, schedulers, buffer managers, and file systems. The
three microkernels considered in this report are Mach/DTOS (see Section 2.3.1.1 and

Section 2.3.1.2), Flux/Fluke (see Section 2.3.1.3), and LOCK and LOCK® (see Section 2.3.1.4).

The security issues section addresses how well microkernel security features can assist in
implementing a secure DBMS on a security-enhanced microkernel. Of particular interest is
how the DTOS access control mechanisms can be used to provide higher assurance for DBMS
access controls. Both relational and object-oriented DBMSs are discussed.

2.3 Technology Summary

This section will describe microkernel and database systems, focusing on the material that is
necessary for an understanding of the remainder of this report.

2.3.1 Microkernels

In general an “Operating System” is the collection of software programs that make computer
hardware useful. To a typical computer user it provides an environment in which the user can
execute programs and manage data. For computer systems that provide services to more than
one user, either simultaneously or in sequence, the role of the operating system expands to not
only provide operational support but also to provide some level of support for the integrity of
itself and the security of the user’s data.

The primary design concept for support of both integrity and security is the idea of an
Operating System kernel that operates in a processor privileged state. All modern processors
provide at least two modes of operation. They are frequently referred to as either, “Privileged
Mode and User Mode” or “Supervisor Mode and User Mode”. The difference between these
two modes varies with each processor, but in general it is that there are a small set of
privileged instructions that can be executed only when the processor is operating in privileged
mode. Examples of these instructions include changing the state of the Memory Management
Unit (MMU), thereby controlling the memory space in which a program is operating, changing
the state of the processor itself by modifying the various processor status and control
registers, and managing the hardware through control of processor interrupts.

Typically all of the user programs operate in user mode, while a majority of the operating
processing is done while operating in privileged mode. The body of operating system software
that operates in privileged mode is referred to as the “operating system kernel” or just the
“kernel”. For most modern multiuser operating systems, the kernel includes a wide range of
operating system functions including: all process management functions, file system
functions, network protocol processing, and hardware management. This tends to be a large
body of software that is not always well structured. Thus such an OS kernel is frequently
referred to as a “monolithic” OS kernel. This design approach has lead to both operational
and security problems. Operational problems occur because there is no way to confine the
impact of errors. Since all OS functions operate in the same environment and have full access
to all system data and system facilities, an error in one part of the system can result in the all
too frequent “system crash”.

For the security community such large, monolithic OS kernels present a problem because they
violate many of the basic tenets of good security systems, the most notable of which is least
privilege. Least privilege calls for a system design in which each critical function executes in
an environment in which it has access to only the data and facilities that it requires. The
monolithic OS approach provides no support for separating the processing elements either for
operational integrity, operational correctness, or system security reasons.

In the late 1980’s, some operating system researchers responded to these problems by
developing the concept of a microkernel based Operating System. The core concept is to
identify the minimum set of operating system functions that need to operate in processor
privileged mode and implement them as a smaller system kernel, thus the name microkernel.
The remainder of the normal operating system functions are then provided in operating
system processes which operate in the processor’s user mode and utilize the services of the

microkernel much as traditional applications utilize the monolithic operating system services.
This approach has several benefits.

s The amount and complexity of code operating in the processor’s privilege mode is greatly
decreased.

= The interaction between other operating system functions is controlled much better,
which greatly decreases the potential for unexpected interactions between different OS
functions.

= The system becomes more flexible and easier to maintain and expand because new
features can be added without the the need to change the kernel.

The one overriding technical issue for microkernel based systems has been performance.
When functions are separated out into separate user mode programs the aJility to
communicate and exchange information efficiently is significantly impacted. When loosely
coupled functions co-reside in a monolithic kernel, they can read shared data structures and
call each other’s services with simple efficient subroutines. The same is not true in a
microkernel based system. In such a system, it is necessary to use a higher cost Inter-Process
Communication (IPC) mechanism or Remote Procedure Call (RPC) mechanism. Thus, though
taking existing tightly coupled operating system functions and breaking them up into
separate user mode processes has obvious security and integrity benefits, it can present a
significant performance problem.

The remainder of this section provides an introduction to several microkernel based systems
that have been assessed both directly and indirectly as part of this effort.

2.3.1.1 Mach This section will give an overview of the Mach microkernel.

Information in this section is taken from the paper, Providing Policy Control Over Object
Operations in a Mach Based System [17] by Spencer E. Minear.

Mach is a microkernel providing a set of basic facilities for use by operating systems and other
applications. Itis designed around an Inter-Process Communication (IPC) facility based on a
port. Mach and systems built on Mach utilize Object Oriented Design concepts by building on
Mach’s port abstraction. A port can be used as an object handle, through which object
methods are invoked or object service requests are made. In addition to ports, Mach provides
several other types of kernel objects including tasks, threads, and memory cache objects [14].
Tasks provide an environment in which all processing is done. All processing is done by a
specific thread and each thread is bound to a single task. Memory cache objects provide
memory in which to store and manipulate data. In addition to these basic objects, the Mach
kernel supports other objects such as devices, processors, and the kernel itself. Each of the
non-port objects has one or more associated ports that are used to represent the object and
through which all operations on the object are initiated.

An examination of the basic Mach structure shows that it is made up, primarily, of two parts;
the IPC services provider and the set of object servers implementing the services of the
non-port kernel objects. Mach uses its own IPC facilities to provide tasks access to its other
types of objects. To request an operation on a non-port kernel object, a task sends a request to
that object via its associated port. The IPC send operation is processed by the kernel the same
as any other send operation. When the send processing recognizes that the target objectis a
kernel object, control is transferred to that object’s kernel server for processing. If the target
object is managed by a task external to the kernel, the request is provided to that task via its

use of the IPC receive operation on the same port. Figure 1 shows the relationship between
the kernel's IPC services, the kernel’s object servers, and the object servers that operate as
tasks external to the kernel. Communication between clients and servers is provided by
communication connections implemented in the kernel IPC services.

Kernel Boundary External Object Server tasks
\ W Ob_?ect 3 »| Service-1 |
Obhect-2 Service-1
Object-1 [ervice-1
Service-2
Service-3

Client
Task

/‘74 Service-1

fj Service-1

Service-1

7 // =g

<4—p IPC Communication Connections

/Ob jgcg / Kernel Object Servers /
/

Figure 1: Mach Kernel Structure

2.3.1.2 DTOS This section gives a brief overview of the DTOS program and the DTOS
system which is built on the Mach operating system. The majority of this section was taken
from the paper, Developing a “Policy Neutral” Control Policy for a Microkernel [6], by Todd
Fine and Edward A. Schneider.

The DTOS program is a follow-on to the Distributed Trusted Mach (DTMach) program [5].
The goal of the DTMach program was to develop a design for a distributed, trusted operating
system based on the Mach 3.0 microkernel [15, 26]. The DTOS program is exploring the
feasibility of the DTMach design through prototyping and study efforts.

One of the goals of the DTOS program is to investigate an approach for developing a
microkernel that supports a wide range of security policies. Rather than simply following the
guidelines in the Trusted Computer Security Evaluation Criteria (TCSEC) [19] and
implementing Discretionary Access Control (DAC) and Multilevel Security (MLS), the DTOS
microkernel provides a framework that encompasses these policies as well as others.

The DTOS security architecture supports policy flexibility by separating the making of policy
decisions from the enforcement of those decisions. The policy decisions are made by security
servers. A security server is simply a process executing in the system that makes decisions
based on a set of security rules. The enforcement of these decisions is performed by the
system component managing the protected objects.

Since the DTOS security architecture is significantly different than previously implemented
security architectures, approaches used to develop security policies in the past were
inadequate for DTOS. In particular, an approach was needed that allowed the requirements
on how the microkernel enforced access to be separated from the requirements on how a given
security server made access decisions. The developed approach relies on composablilty

theory [1] to allow each of these sets of requirements to be specified separately and then
integrated into an overall system policy.

2.3.1.3 Flux/Fluke This section gives a brief overview of the Flux/Fluke system being
developed at the University of Utah. Flux is the name of the overall system, while Fluke is
the name of the microkernel. This information in this section is based on the paper,
Microkernels Meet Recursive Virtual Machines [8], by Brian Ford, Mike Hibler, Jay Lepreau,
Patrick Tullmann Godmar Back, Shantanu Goel, and Steven Clawson.

The Flux/Fluke system consists of the microkernel running on a hardware platform together
with support for a virtual machine architecture. The virtual machine architecture allows the
development of virtual machine that can run applications or recursively support other virtual
machines. The microkernel API provides simple memory management, scheduling and IPC
primitives. The virtual machine architecture uses a set of IPC based “common protocols” for
communication between the virtual machines.

The Fluke kernel primitives include:

s threads: for flow of control.

» spaces, regions and mappings: for thread address space management. Spaces define a
thread’s address space. Regions are used to export memory from a space, and mappings
are used to import memory to a space.

® ports, port sets and port references: for IPC. IPC is based on a capability model like
Mach’s. A port represents the server side of a communication channel and a port
reference the client side.

s mutexes and condition variables: for synchronization of access to shared memory.

A minimal form of scheduling is provided by allowing threads to donate their CPU time to
other threads, based on some higher level scheduling policy, or to request more time.

The Fluke kernel contains no special security mechanisms; all low-level support for security is
integrated into the other primitives exported by the kernel. In particular, there is currently
no support for security control based on a subject’s security context. Research is currently
going on in this area to determine the best way to add such control within the context of the
Flux architecture. ’

2.3.1.4 LOCK and LOCK6 This section will give an overview of LOCK6. The LOCK TCB,
developed by Secure Computing Corporation during the Logical Coprocessing Kernel (LOCK)
program, is a secure operating system with a microkernel architecture. The fundamental
design goal of the LOCK system was to design a highly secure minimal system. The TCB
itself had only 23 entry points ard provided services for a very limited set of basic TCB
entities. These services included subject management such as scheduling and signaling, data
storage object management, memory managment, and basic hardware functions such as time
and access to device drivers.

LOCKS® is the name of the second generation LOCK TCB being developed by SCC for use in
the latest versions of the Secure Network Server (SNS) system. Though the implementation
is quite different, there are many aspects of the LOCKS6 system that are similar to the original
LOCK system. Like the original LOCK system, the code which operates in the processor’s

supervisor state was designed to be minimal both in size and function. Other OS functions are
implemented as user state processes which, as in LOCK, communicate with each other and
other processes utilizing the basic communication facilities supported by the supervisor state

software.

There are two major differences between LOCK and LOCKS. The first is that the fundamental
control point in LOCKS is the message based Inter-Process Communication (IPC) facility, not
memory mapped objects as in LOCK. The second is that the TCB is significantly larger in that
it has been expanded to support a POSIX interface rather than the original 23 entry interface
provided by LOCK. LOCKS continues the use of a microkernel architecture and very strong
separation of the security policy enforcement from the security policy logic.

2.3.1.4.1 LOCKS Architecture As with other microkernel systems, LOCK6 was de .igned so
that a minimum of processing is done in the processor’s supervisor state. Unlike other
microkernel systems, LOCKS has very strong and flexible control facilities integrated into the
TCB. The LOCKS6 kernel provides support for the following basic objects and their supporting
operations:

s Processes,

» Threads,

s Memory objects, and
s IPC channels

Other higher level operating system objects such as files, sockets, and devices are
implemented in various Operating System processes which operate in the processor’s user
state.

As with Mach and Fluke based systems, nearly all operating system level operations in
LOCKS are accessible only via the IPC facilities. This includes access to files, memory objects,
devices, and higher level communications channels such as sockets. This mapping of higher
level objects to IPC channels is all done within POSIX or other library interfaces, making the
details of the implementation transparent to the applications.

2.3.2 Database Systems

This section provides an overview of current commercial database system architectures and
security capabilities. Both relational and object oriented systems are discussed.

2.3.2.1 Relational Database Systems Relational database systems (RDBMSs) are based on
the relational model developed by Codd [3]. The major commercial databases (Oracle, Sybase,
Informix, Ingres, DB2) are all RDBMSs. The relational model is based ¢h standard set theory
and relational algebra operations. In the relational model, all data (including metadata that
defines the database, such as definitions of views and stored procedures) is stored in tables.
Each row of a table has a unique identifier, called the key, and represents a record in the table.
Each column of the table has a fixed data type and represents a particular attribute of the
table. Operations on RDBMSs are performed using a special, standardized, query language
called SQL that is built on relational algebra.

For a relational DBMS, the objects to which access needs to be controlled are DBMS related
entities. In the discussion that follows, Trusted Oracle 7 (TO7) [4] is used to illustrate the
security functionality of a typical relational DBMS.

2.3.2.1.1 Identity Based Access Control (IBAC) For Trusted Oracle 7, the following DBMS
"named objects" are defined:

» Tables

» Views

= Stored procedures

= Sequences

» Packages (a collection of functions, procedures, variables, constants and exceptions)

IBAC is enforced on these named objects by the DBMS. Either the owner of the object, or
someone granted a special privilege via the WITH GRANT OPTION or WITH ADMIN
OPTION, can give an object privilege for a named object to another user or user-group(role).
The object privileges supported are:

= ALTER (a table or sequence)

s DELETE (a table or view)

a EXECUTE (a procedure)

s INDEX (a table)

s INSERT (into a table or simple view)

» REFERENCES (modify a table’s foreign key integrity constraints)

s SELECT (read a table, view or sequence)

» UPDATE (write a table or simple view)

Roles are defined as sets of users and object privileges can be granted to roles or to individual
users.

There is also a set of system privileges that control what special commands a user (or role)
can execute. These are usually only granted to system administrators. In TO7 there are over

60 such privileges. They include things like:
s ALTER DATABASE
s CREATE ANY INDEX
= CREATE ROLE
= DROP ANY TABLE
» ALTER ANY TABLE
s GRANT ANY PRIVILEGE.

2.3.2.1.2 Mandatory Access Control (MAC) In most commercial secure RDBMSs, MAC is
enforced at the granularity of rows. That is, each row in a table has an associated level. This
is the standard approach used by Oracle, Sybase and Informix for their trusted DBMSs. The
DBMS runs as a trusted subject(s) that enforces the labeling constraints. The trusted subject
is responsible for labeling the rows correctly and only retrieving information that the user is
cleared to see. The information is stored in files at DBMS High level and every response to a
query involves a downgrade by the trusted DBMS server subject. Note that all named objects
in the DBMS are contained in tables of some form or other and thus have associated levels.
Tables may be multilevel objects. For example, there is a system table that contains all views
defined for the database. Each view definition is a row in this table and the level of the view is
defined as the level of the corresponding row in the table.

TO7 actually has two modes:

s DBMS MAC mode, in which the DBMS runs as a trusted subject and enforces MAC as
described above

» OS MAC mode, in which the database is partitioned by level and the operating system
protects information stored in files at different levels.

OS MAC mode is a tcb subset architecture, as described in the TDI [20]. The advantage of OS
MAC mode is that on a high assurance operating system, the operating system is responsible
for enforcing MAC on the DBMS objects. This provides a higher assurance MAC without
having to modify, or add additional assurance to, the DBMS. The disadvantage of OS MAC
mode is that it requires the DBMS processes to be multiply instantiated; once at each level. If
there are several levels, this can affect performance. Since higher level instances of the
DBMS cannot talk to lower level instances, this also makes it more difficult to enforce
integrity constraints across the entire multilevel database. Also, even in OS MAC mode, the
DBMS is responsible for enforcing IBAC on the DBMS named objects.

2.3.2.1.3 Client/Server Architectures Most current commercial RDBMSs are networked
based and implement a client/server architecture. The client runs on the user’s workstation
and communicates with a server program running on the database server machine. The
server process can either be dedicated to the particular client, with one server process per
client, or can be a multi-threaded server that handles connections from several clients
simultaneously. Clients can be required to authenticate themselves to the server, but, in most
cases, it is then the server’s responsibility to ensure that only data that the client is allowed to
see is returned to the client.

2.3.2.2 Object Oriented Database Systems Object Oriented Database Systems (OODBMS)
are based on the concept of objects rather than relations. Object technology is becoming
widely used for software development because it promotes development.of modular software
that can be easily shared and reused. Object DBMSs are especially useful for supporting
complex data types and distributed applications.

While there is no consensus OODBMS model that corresponds to Codd’s relational model,
there is a published model that several commercial OODBMS vendors have agreed to support
[16]. In this model an object is a primitive that has a unique identifier. Objects have

associated operations that define their behavior and associated properties (attributes and

10

relationships) that define their state. Objects are organized in a hierarchy of types and
subtypes. Subtypes inherit the behavior and state associated with their supertypes.

OODBMSs are closely related to object oriented programming languages such as C++ and
SmallTalk. There is no standardized query language that plays the role that SQL does for
relational DBMSs. Queries are done either directly via the programming language, or via
extensions to the programming language that provide additional query capabilities; in some
cases, SQL-based capabilities. The primary features that OODBMSs add to an Object
Oriented programming environment include:

» object persistence: so the data is not lost when the program terminates
s shared objects and concurrency control

a transactions

a querying capabilities

» versioning support

» access control and audit

= integrity constraints

s recovery capabilities.

An interesting difference, for security considerations, between an OODBMS and a RDBMS is
that most of the OODBMS code executes in the context of the user and being able to share
objects involves sharing between users. For most commercial RDBMSs, the server processes
execute in the name of a dbms pseudo-user, and, for efficiency, server processes share common
data storage areas.

There are currently no commercial MLS OODBMSs. ONTOS is developing a prototype
system called the Trusted ONTOS Prototype (TOP) for Rome Laboratory {23]. This is the
model we will use in our analysis of OODBMSs and DTOS control mechanisms.

The following features of TOP are of interest to our study:

s Objects are multilevel. Each attribute in an object type is assigned a visibility level that
identifies the lowest level at which it is visible. Different attributes may have different
levels. The level of an attribute in an instantiated object must dominate the visibility
level.

s A TOP object comprises a set of L-instantiations, each of which consists of the data
entered into the object at level L. An object’s L-instantiations share a common object id
and each is stored at its own level, L.

» A user’s access to an object is through a view. Users do not access L-instantiations
directly. A user at level L would be presented with the L-view of the object. The L-view
of the object is constructed from the L-instantiation and the semantic vector associated
with the L-instantiation that defines which attributes should be inherited from a lower
level.

» Operations that involve modification to the database at a level lower than the level of
the user are handled via a TCB trusted path that queries the user before the operation is
performed.

11

Plans are for TOP to use Discretionary Access Controls to implement separate roles for the
DBA and SSO as well as user and group based controls. The details of the TOP DAC
mechanism were not available to us at the time of this report.

12

Section 3

Microkernel Operational Issues and
DBMSs

This section discusses several operational issues having to do with hosting a DBMS ona
microkernel architecture. These issues were originally raised in a paper by Stonebraker [25]
discussing operating system support for DBMSs and were revisited in the MITRE report,
MLS Microkernel DBMS Design Analysis [18]. In particular, the MITRE r.port discusses
threaded execution, schedulers, buffer managers, and file systems, and describes certain
features in these areas that would facilitate supporting a DBMS. The focus of this section is
on describing the functionality of three microkernel architectures in these areas and
evaluating how well they meet the criteria in the MITRE report. The functionality under
evaluation includes both the fundamental design characteristic of the microkernels as well as
the ease with which vendor-supplied modules with special functionality can be incorporated
into the system. The systems considered are Mach/DTOS, Flux/Fluke, and LOCKS.

3.1 Operational Issues Summary

Before looking at the individual systems, the operational issues raised by the MITRE report
are summarized in this section. These issues involve four areas: threaded execution,
schedulers, buffer managers, and file systems. The particular functionality in each of these
areas that would support hosting a DBMS on the system is identified. In certain areas, such
as scheduling, buffer managing and file systems, the issue is not whether the microkernel has
the desired functionality included in it, but whether it is possible to add modules to the
system that would provide the needed functionality.

3.1.1 Threaded Execution

As discussed in Section 2.3.2.1, in a client/server architecture there are two common ways in
which the binding between client and server can occur. Until recently, the usual method was
to have one server for each client and to allow these servers to access a shared data area for
caching database information. For systems with a high number of concurrent users, this had
the disadvantage of putting a heavy load on the system due to the number of servers and the
number of context switches that would have to occur. Multi-threaded servers provide the
ability for a single server to handle several clients by using separate threads within the server
process for each client.

Most commercial RDBMSs now support multi-threaded servers but to do so efficiently
requires support from the operating system. So the ability to support threads within a process
is a feature that the microkernel should provide to support DBMSs.

Since the multi-threaded server runs as a single process, all threads within that process have
access to the same virtual memory. This implies that the only thing protecting the
information that one client thread can access from being accessed by a different client thread

13

is the correctness of the server implementation. An issue that was discussed was whether
some separation between threads could be achieved. This might include assigning each
thread its own security identifier (SID). A related idea that was discussed was to allow a
thread to sub-set the process virtual address space for newly spawned threads in an attempt
to provide a degree of virtual memory isolation for threads. The feasibility of these ideas is

discussed in Section 3.2.1.

3.1.2 Schedulers

Many operating systems provide general purpose scheduling algorithms, such as strict
round-robin, that are not efficient for DBMS operation. These algorithms can result in poorer
performance due to unnecessary or inappropriate context switches. Microkernel scheduler
functionality that would assist in hosting a DBMS ona microkernel include:

» The ability to change the scheduling priority of processes so that DBMS processes could
have their priority modified as needed.

» The ability to install and use application specific scheduling algorithms that are tuned
for better DBMS performance. »

3.1.3 Buffer Managers

Buffer managers are used to handle paging of information between secondary storage and
main memory. The ability to control aspects of this paging activity would provide additional
officiencies for a DBMS implementation. In particular, the MITRE report identifies the

following desired capabilities:

= The ability to install and use page replacement algorithms that are customized for the
DBMS application.

» The ability for an application to request that pages be flushed to disk.
s The ability to request selective, temporary, remapping of virtual address spaces.

3.1.4 File Systems

In a microkernel based system the file system is normally not part of the microkernel, but
rather is integrated as a separate server into the system. This implies that DBMS friendly file
servers could be developed that provide specific support for DBMS applications. The type of
support that such a file system might provide includes: disk striping, creating per-partition
file system servers, and integrating file system access with virtual memory address-space

remapping.

3.2 Mach/DTOS

This section discusses how Mach and DTOS address the operational issues discussed in
Section 3.1.

14

3.2.1 Threaded Execution

Mach/DTOS does support threaded execution. Hence, Mach/DTOS tasks and threads can be
used to implement multi-threaded servers. The question is how the Mach/DTOS
implementation of threads might assist in the other issues discussed in Section 3.1.1.

In DTOS, security identifiers (SIDs) are associated with tasks, not threads. If a DBMS server
is multi-threaded (one thread per user), then microkernel support for separation between the
threads would require that each thread have its own security context or SID. So, while DTOS
does support multithreaded operation, it does not support the ability to run threads within
their own security context. Adding separate security contexts to threads would involve major
changes to the Mach/DTOS design and would essentially eliminate the distinction between a
thread and a task.

As mentioned in Section 3.1.1, an additional idea discussed was allowing a thread to sub-set
the task virtual address space for newly spawned threads as an attempt to provide a degree of
virtual memory isolation for threads. In our opinion sub-setting the task virtual address
space for newly spawned threads is impractical in Mach/DTOS and would eliminate the
fundamental design advantages of Mach threads.

Another DTOS consideration should be included in this section. An important DTOS design
criteria is the idea of separating the two areas of policy decision and policy enforcement. The
DTOS Security Server is responsible for making policy decisions while the DTOS Trusted
Computing Base (TCB) is responsible for enforcing policy decisions. So while the DTOS
microkernel cannot feasibly support the association of SIDs with threads, and thus use the
DTOS TCB to enforce policy decisions, the DBMS server can. Using the fact that in DTOS the
TCB is separate from the Security Server, the DBMS server could bind a SID to each of its
threads and then use the Security Server to drive policy decisions. It would then be the
DBMS server’s responsibility to identify the necessary control points and enforce the policy
decisions made by the Security Server.

3.2.2 Schedulers

The Mach/DTOS interface calls (taken from the DTOS Kernel Interfaces document {24]) that
are relevant to scheduling are the following:

swtch Attempts to context switch the current thread off the processor.

swtch_pri Attempts to context switch the current thread off the processor. The thread’s
priority is lowered to the minimum possible value during this time. The priority of the
thread will be restored when it is awakened.

processor_set_max priority Sets the maximum scheduling priority for a processor set.
processor.set_policy.disable Disables a scheduling policy for a processor set.
processor.set_policy_enable Enables a scheduling policy for a processor set.

task priority Sets the scheduling priority for a task.

thread_switch Provides low-level access to the scheduler’s context switching code.
thread_max priority Sets the maximum scheduling priority for a thread.

15

thread_policy Sets the scheduling policy to apply to a thread.
thread priority Sets the scheduling priority for a thread.

thread_wire Marks the thread as “wired”. A “wired” thread is always eligible to be
scheduled and can consume physical memory even when free memory is scarce.

thread_depress_abort Cancels any priority depression effective for a thread caused by a
swtch_pri or thread_switch call.

Using Mach calls such as task priority and thread_priority, the scheduling priority of
processes can be changed. The concept of an interface for registering alternate scheduling
algorithms is harder to meet in Mach/DTOS. This is explained further in the following
paragraphs.

The Mach interface implies flexibility and provides a mechanism which allows a total of 32
different policies to be supported, but the implementation is very strongly biased to two
simple policies, timeshare and fixed priority. A scheduling policy is bound to a processor set
and there is a facility to define which of the “supported scheduling policies” is to be used on a
given processor set. Tasks can be assigned to a processor set and thus are impacted by the
scheduling policy that is selected for a processor set. The focus of the scheduling algorithm is
the thread.

Each processor has 32 run queues, one for each of 32 different priorities. The maximum
number is a compile time value. Each processor set has 32 run queues, one for each of 32
different priorities. The maximum number is a compile time value. The normal search
pattern is to look on a processor’s run queue first and then look on the associated processor’s
processor set’s run queue. When a thread is ready to run it gets put on the run queue
associated by its current computed priority.

In Mach/DTOS there are no facilities to dynamically provide a scheduling algorithm at
runtime. Theoretically it is possible to create new scheduling policies and make them effective
on a per thread and/or per processor set basis. However, to add a new policy would require
changes to the current Mach code.

If the capability to introduce new scheduling algorithms was implemented in DTOS, this could
also lead to assurance problems. Introducing unknown code that implements scheduling into

the system can introduce new covert channels. Each piece of code that implemented a
scheduling algorithm would have to be secured and assured prior to its use in the system.

3.2.3 Buffer Managers

Mach/DTOS does not support an interface to request modified page-replacement algorithms.
However, using a combination of other Mach/DTOS mechanisms, it may be possible to
implement other page-replacement algorithms as needed.

The first Mach/DTOS mechanism that helps in implementing alternate page-replacement
algorithms is the vm_wire interface call. Wiring is allowed down to a single page or over a
defined contiguous region of memory. Wiring faults the requested pages in and fixes them in

memory.

The second Mach/DTOS mechanism that helps in implementing alternate page-replacement
algorithms is the ability to specify external memory managers. As described in the OSF Mach

16

Kernel Principles document [15], the Mach kernel allows user mode tasks to provide the
semantics associated with the act of referencing portions of a virtual address space. It does
this by allowing the specification of an abstract memory object that represents the
non-resident state of the memory ranges backed by this memory object. The task that
implements this memory object (that responds to messages sent to the port that names the
memory object) is called a memory manager. Mach/DTOS has a default memory manager
which is an external memory manager that provides backing storage for anonymous memory.
In addition to the default memory manager, it is possible for users to specify external memory
managers that are then associated with memory objects. These external memory managers
can then be implemented so as to facilitate alternate page-replacement algorithms.

One note on the above paragraph that may dismiss the possibility of implementing alternate
page-replacement algorithms by using external memory managers is the following. Under the
Physical Memory section of the OSF Mach Kernel Principles document [15], the following
statements are made: The majority of the physical memory of the system forms a single paging
pool. This pool of pages forms a cache for the virtual memory system. The set of pages that
reside in physical memory at any given time is decided by the page replacement algorithm,
implemented in the kernel. Clients have no control over this algorithm (with the exception of
the vm_wire call). Even external memory managers have no influence; if they do not respond
fast enough to a request to write a page, the default memory manager will be used to move the
page from physical memory to system paging storage (except for the clean-in-place mechanism
reserved for “trusted” managers).

Interfaces to allow selective remapping of virtual address spaces can be accomplished in
Mach/DTOS by using the out-of-line data option of mach_msg. Data can be transferred using
this facility on either a copy-on-write basis or a transfer basis. One thing to note is that this is
a permanent transfer of data, it is not a temporary adjustment of page tables.

3.2.4 File Systems

Since the Mach/DTOS microkernel does not include its own file system but provides support
for file system servers, it would be possible to implement file systems having the capabilities
described in Section 3.1.4.

3.3 Flux/Fluke

This section discusses how Flux and Fluke address the operational issues discussed in
Section 3.1. This section is necessarily very preliminary since our information on Flux and
Fluke is limited to the descriptions in the papers: Microkernels Meet Recursive Virtual
Machines [8], Fluke: Flexible y-kernel Environment Design Principles and Rationale [9], and
Fluke: Flexible y-kernel Environment Application Programming Interface Reference [7)].

3.3.1 Threaded Execution
Fluke does support threaded execution and as we understand it, threads will be separately
identified, in contrast to DTOS where only tasks separately identified. The separate

identification of threads addresses some of the issues mentioned in Section 3.1.1. As
mentioned Section 3.2.1, an idea was also discussed concerning sub-setting the task virtual

17

address space for newly spawned threads. We believe that Fluke will not allow this, although
we do not know this for a fact.

3.3.2 Schedulers

The paper, Microkernels Meet Recursive Virtual Machines [8], states that in Fluke, the
kernel provides a primitive that supports hierarchical scheduling models. In this model
individual threads act as schedulers by donating some of their CPU time to other threads. A
scheduling hierarchy is developed in which threads higher in the hierarchy donate time to
lower level threads. The individual thread scheduling can be based on a common scheduling

algorithm that all threads follow.

The fluke_thread_state data structure has a scheduler._ref field which is a reference to
the port to which the thread sends IPC messages to request CPU time. If NULL, the thread
can only run using donated time from another thread.

In the fluke_thread_set_state call (set the state of a thread object), there is a parameter
called scheduler_ref. The reference must be null or must point to a port object. If

scheduler_ref is non-null, it indicates the reference object to be inserted as the thread’s
scheduler port reference. If scheduler.ref is a null pointer, then the thread’s scheduler

reference is unchanged.
There is also a fluke_thread_schedule call which schedules another thread to run.

It appears that the Fluke scheduling mechanism is fairly flexible and may be able to address
some of the issues detailed in Section 3.1.2. From looking at the current Fluke API
document [7], it does not appear that the capability exists in Fluke to alter task and thread

priorities.

3.3.3 Buffer Managers

It appears that there is some flexibility in specifying page replacement policies in Flux/Fluke.
Each region has an associated keeper port, which identifies the page fault handler for the

region. This would help address the issue concerning the interface to request modified
page-replacement algorithms mentioned in Section 3.1.3.

In addition, it appears that interfaces to allow selective remapping of virtual address spaces
can be accomplished in Fluke by using mapping objects.

3.3.4 File Systems

We do not have enough information about Fluke to comment on their file system mechanisms.

3.4 LOCKS6

This section discusses how LOCKS6 addresses the operational issues discussed in Section 3.1.

18

3.4.1 Threaded Execution

LOCKS does support the use of threads both within the LOCKS6 TCB and in applications.
LOCKS threads make it easier to port existing threaded applications and can help to remove
the need for complex software from the applications which keep track of multiple
simultaneous activities. However, threads always execute within the context of a single
process and inherit their security attributes from the containing process. Thus all threads
within a given process have equal access to all files, communication channels and memory
accessible to their containing process. In particular, a multi-threaded DBMS server that used
separate threads for separate clients would need to enforce its own control over what each
thread could access.

3.4.2 Schedulers

The LOCKS system does not make the system scheduler visible to applications, beyond
supporting the related POSIX requirements. This approach was chosen because of the
following security concerns.

» Scheduling issues can be a significant source of covert channels within a secure system.
The LOCKS philosophy is that anything that can introduce covert channels must be
reviewed very carefully, and such functionality is typically left out of the system unless
there is a very strong overriding requirement to include it.

» To support efficient scheduling normally requires extra access to and/or modification of
the lowest levels of the kernel’s operation. The lowest level of the kernel is typically the
most security critical part of the system. Any increase in complexity or changes to this
area can have significant impact on the overall assurance state of the system.

Thus the LOCKS system provides very limited access to the scheduling processing.

3.4.3 Buffer Managers

The LOCKS system does not provide any specific support for buffer management beyond the
normal access to memory objects as defined by the POSIX standard or a BSD like Unix OS.

3.4.4 File Systems

LOCKS provides a standard POSIX file system interface which has been extended to provide
both MLS and Type Enforcement based control over access to files. The LOCKS architecture
has completely separated the file system functions from the system kernel. Thus it is
structured to allow the addition of specialized file systems to the running system. However no
services have been implemented within the existing file system to allow the mounting of new
file systems which may be tuned to support a specific application. Again the major issue is
concern for security and/or the usefulness within a highly secure system for a less secure file
system.

19

Section 4
Microkernel Security Issues and DBMSs

This section describes security issues having to do with hosting a DBMS on a microkernel
architecture. It begins by describing the security controls included in Mach, DTOS, and
LOCKS. Due to the fact that Flux/Fluke is currently under development and we do not know
the security controls that will be added to it, Flux/Fluke is not discussed in this section. This
section ends by discussing how the DTOS microkernel security controls could be applied to a
DBMS. In particular, the following questions are considered:

» What portions of a DBMS security policy can the DTOS microkernel security controls
support?

» What portions of a DBMS security policy must the DBMS support?

= What support can the DTOS microkernel lend to the DBMS to help it support its portion
of the security policy?

» How might a DBMS be structured to better take advantage of the DTOS security
controls?

4.1 Microkernel Security Controls

This section discusses microkernel security controls present in the Mach, DTOS and LOCK6
systems.

4.1.1 Mach

Information in this section is taken from the paper, Providing Policy Control Over Object
Operations in a Mach Based System [17] by Spencer E. Minear.

As discussed in Section 2.3.1.1, Mach uses its IPC facility as the focus of all system operations.
An important question, then, is the extent of control provided through the IPC facilities.

Mach provides one primary control mechanism which is based on a capability concept. From
the viewpoint of a task, a port is a task specific name called a port right. The task-specific port
right embodies the capability (rights) that the task has to the port named by the port right. In
Mach, however, the range of capabilities embodied in a port right is limited. Each Mach port
right represents the capability to access one or more of the following kernel-supported
IPC-related operations:*

s Send,
s Send-Once, and

s Receive

1 A single port right can define either a send and/or a receive right, or a send-once right.

20

The following related operations deal with the transfer of port rights between tasks:

The holder of a send right can, through the use of a send operation on any send or
send-once right, have the kernel either move or duplicate the send right to the receiver
of the message.

u The holder of a send-once right can, through the use of a send operation on any send or
other send-once right, have the kernel move the send-once right to the receiver of the
message.

a The holder of a receive right can, through the use of a send operation on any send or
send-once right, have the kernel create a send or send-once right for the receiver of the
message, or move the receive right to the receiver.

There are two problems, each discussed in more detail below, with these eisting control
mechanisms. The first is the limited control over the transfer of port rights and the second is
the complete lack of control over the object-related services. These problems are not
associated with capabilities in general. The required characteristics of capabilities for use in
secure systems were outlined very clearly by Karger and Herbert [11]. Previous work has
provided designs for capability machines that do deal with the limitations present in the
Mach implementation. Examples are provided by HYDRA (29], SCAP [12] and ICAP [10]. A
common element in other systems is that a capability is necessary, but not sufficient, to gain
access to an object. The fundamental fault in Mach is that possession of a capability is
sufficient for full access to all operations on the associated object. This makes it more difficult
to build a secure system on Mach or on any other microkernel whose IPC lacks these control
capabilities.

The intent of the DTOS work is to integrate the concepts present in these other capability
machines into Mach. The system utilizes the improved Mach kernel as the base for a Unix
operating system controlled by an underlying mandatory control policy.

The following two sections discuss in more detail the problems with the the existing Mach
control mechanisms.

4.1.1.1 PortRight Transfer The primary problem associated with the rules for controlling the
transfer of port rights is the complete lack of kernel-provided mechanisms or facilities to verify
that once a transfer is complete, the operational state of the system is still in agreement with
the system’s security policy. This is particularly dangerous to both secure and safety-critical
systems. It means that the kernel is unable to identify or stop a task from accessing a port via
a port right it obtained as a result of an error or via malicious action. Applications are left to
resolve this problem themselves without assistance from the kernel. One design technique
that can be used is to inject a layer of indirection in the use of all IPC operations. For
example, in a normal Mach environment two tasks that are allowed to communicate may do
so directly with the use of IPC. This means, however, that the sending task can transfer any
right it holds, either intentionally or by accident, to the receiving task. If an application needs
to assure that rights cannot flow from the sender to the receiver, then it is necessary to have
an intermediary task to filter messages to stop the transfer of port rights that violate the
system’s security policy. This approach can lead to sufficient control for many applications but
may result in undesirable performance penalties and increased complexity in the application.

4.1.1.2 Service Control Because the Mach port right control facilities have no association
with object services accessible via a port right, Mach provides no direct control over object

21

services. If an application needs to provide control over individual object services, it must
address the problem by binding groups of object services to ports, essentially subdividing an
object. The application can then attempt to control access to the services by controlling the
distribution of port rights to the various groups of services.

An example of the use of this approach can be seen in the design of the Mach kernel itself. One
of the kernel objects is the kernel itself, referred to as the host object. The range of operations
available for the manipulation of the host object, however, are split into two groups: the
privileged operations, like host_reboot and host_set_time, and generally available
operations, like host_info and host_get_time. The designers of the kernel recognized that it
would be necessary to control access to the kernel’s privileged operations independently from
the general operations. Thus, the host operations were split into the two groups with the
privileged operations bound to the host-privilege port and others to the host port.

There are two undesirable aspects of this approach for controlling services. The first is the
lack of flexibility. A grouping that is correct for one application and security policy might be
incorrect for another application or security policy. The lack of flexibility of the grouping
approach is particularly evident in the grouping of task object services. In total, there are
about 45 different task services available on a task port and there is no ability to control
access to these services individually. Thus, a holder of a send right to a task port has implicit
permission to all 45 task related services. It is an all or none situation.

The second undesirable aspect of this approach is that it does not scale well. If it were
possible to assign the operations to different ports, the result might be a larger number of
ports, especially in the case of objects with many services such as the kernel's task object.
This leads to complexity of the control aspects of the design. Unnecessary complexity of any
type in any system is undesirable. In the case of secure and safety-critical systems,
unnecessary complexity is especially undesirable and must be avoided wherever possible.

In the following section, we describe the security additions that were made to Mach as part of
the DTOS program.

4.1.2 DTOS

Information in this section is taken from the papers Providing Policy Control Over Object
Operations in a Mach Based system [17] by Spencer E. Minear and Developing a “Policy
Neutral” Control Policy for a Microkernel [6] by Todd Fine and Edward A. Schneider.

4.1.2.1 Overview of DTOS Microkernel and Security Server Interaction As mentioned in
Section 2.3.1.2, a current focus of the DTOS program is to add support for a wide range of
access control policies to the Mach microkernel. This is being accomplished by inserting
control logic in the microkernel and adding a user space security server that performs security
computations for the microkernel. In other words, the processing of each microkernel request
is being modified to request a security computation by a security server before providing a
service. This is illustrated in Figure 2.

When requesting a security computation, the kernel must provide information indicating the
task that is requesting the service and the entity upon which the service is to operate. Other
than regions in virtual address spaces, all entities in Mach are represented by ports. Thus, it
suffices for the kernel to associate security information with each task, port, and memory
region. When requesting an access computation, the kernel provides the security information

22

DTOS Kernel

Security
request Server
request permitted?
|
security
computation

Figure 2: DTOS Kernel and Security Server Interaction

for the accessing task and the security information for the entity upon which the operation is
to be performed. In response, the Security Server provides an access vector indicating which

operations the accessing task may perform on the entity. Although the Security Server could

simply respond with a yes/no answer as to whether the operation is permitted, the entire set

of permitted operations is returned for efficiency. By caching the returned access vectors and

consulting the cache before requesting computations from the Security Server, the kernel can
avoid interactions with the Security Server when the necessary information is in the cache.

The security information that a security server needs to make access computations depends
on the particular policy implemented by that security server. For example, a security server
enforcing an MLS policy makes its decisions based on the security levels of the accessing task
and the accessed entity. However, having the microkernel provide security levels to the
Security Server would be incorrect since it would hard code into the microkernel that each
entity has a security level. To be truly policy flexible, the microkernel cannot contain any
policy specific information. Thus, the microkernel associates opaque labels called security
identifiers (SIDs) with each kernel entity. Only the Security Server can interpret the meaning
of a SID. The Security Server does so by recording the mapping between a SID and the
security context, which defines the meaning of the SID. In the case of a MLS policy, a security
context might consist of simply a security level. In the case of a Type Enforcement 2] policy,
the security context associated with a task SID might contain only a domain, while the
security context associated with each of the other SIDs might contain only a type.? The level
of indirection provided by SIDs allows the same microkernel to be used regardless of how the
Security Server interprets SIDs and makes access decisions.

The next section discusses in more detail how DTOS added security control to Mach.

4.1.2.2 DTOS Security Control As mentioned in Section 2.3.1.2, the prototype being
developed on the DTOS program by Secure Computing Corporation consists of a modified
Mach kernel and an external Security Server. The separation of policy decisions done in the
Security Server from enforcement done in the kernel has proven successful in the LOCK
system [21] and was discussed in the context of a Unix system by Walker, Kemmerer and
Popek in [27]. The prototype attempts to resolve the limitations in the base Mach control
mechanisms that were outlined in Section 4.1.1. To accomplish this, the prototype has added
two new control mechanisms not available in the base Mach kernel and added a new interface

2Type Enforcement controls subject-to-subject access on a domain-to-domain basis and subject-to-object access on a
domain-to-type basis. Thus, the security information needed to make decisions consists of domains and types.

23

to the kernel. The additions are, respectively:

IPC Control — The prototype provides expanded control over all aspects of port right
manipulations. This allows the prototype’s kernel to enforce policy-directed control over
the transfer of port rights as well as over the use of the basic IPC operations.

Object Service Control — The prototype extends the port right capabilities to define policy
directed control over the individual object services. The prototype kernel provides
control over the individual services related to all kernel objects.

Security Server — The prototype implements a new interface between the Mach kernel and
an external Security Server. This allows very strong separation between the
enforcement mechanisms and the security-policy decisions. It allows the prototype
system to ensure that all port right usage is in agreement with the current state of the
security policy at the time of each usage. It also allows the system to localize the
security policy in a single system element.

These additions address the control limitations discussed in Section 4.1.1. The two additional
control mechanisms ensure that all system operations are subject to control. The new
interface provides for the flow of control information from a mandatory security policy
implemented in the Security Server to the enforcement mechanisms in the kernel and
non-kernel object servers.

The general approach used in the prototype to add these new control mechanisms is based on
the concept of a security fault. The security fault concept and its implementation within the
prototype are very similar to that of Mach’s page fault processing and the use of external
pagers to implement memory objects. A security fault occurs when a task attempts to use a
port right for which there is no readily available access-permission information. In response
to the security fault, the kernel interacts with the Security Server to obtain the relevant
permission information. To minimize the costly interactions between the kernel and the
Security Server, the kernel caches the permission information, in the form of access vectors,
for future reference, just as the kernel caches data to minimize interactions with pagers.

To implement the new control mechanisms following the ideas laid out by the security fault
concept, five specific types of changes were made to the Mach kernel:

1. The addition of identification information on kernel objects to support the policy-based

access decisions,
2. The addition of permission checks and security-fault detection in the kernel’s IPC

processing software,

3. The addition of permission checks and security-fault detection in the kernel’s object
service processing software,

4. The addition of an access vector cache to minimize interactions between the kernel and
Security Server, and

5. The extension of the kernel interface:

» The addition of a new interface for the Security Server. It alléws the kernel to
obtain object access-permission information from the Security Server and allows
the Security Server to invalidate previously granted permissions.

s The extension of the existing IPC facilities to provide identification and permission
information to external object servers along with a service request. The
identification and permission information are available to the kernel IPC services
from the kernel’s access vector cache.

Figure 3 shows the structure of the extended Mach kernel and its interaction with the
Security Server. It shows that the permission checks are done in the IPC processing to control
the use of all IPC related services. It also shows that permission checking is done in the
kernel's service processing software to provide control over individual object services. Before a
kernel object’s server initiates a requested service, both of these permission checks must be
passed successfully.

Extended Kernel Boundary

=0 o
S

4 R~ Servieell
// T » Service-1

? " Sernee
L
/// e

Access Vector

/ //v Cache

<@ 1PC Connections
Security Server =% Kernel Processing Sequence

<+—= Permission Check Information flow

Client
Task

Figure 3: Kernel Control Mechanisms

Searches in the kernel’s access vector cache are based on a pair of identifiers, bound to the
relevant kernel objects. The first identifier is the Source Security ID (SSID) which embodies
the control-relevant identity of the task making the request. The second identifier is the
Target Security ID (TSID) which embodies the control identity of the object being accessed.
When no entry is found in the cache, the current thread takes a security fault and the kernel
makes a permission information request to the Security Server task. The kernel provides the
(SSID, TSID) pair of identifiers and the permission being checked to the Security Server. The
Security Server responds with the required access vector information that reflects the
permissions based on the current state of the system’s security policy.

Figure 4 shows the flow of identity and permission information from the kernel’s access vector
cache to a receiver of a request. The IPC processing binds the requester’s SSID and access
vector to the request message. Because the message receive operationis a direct
communication between the kernel and a server, the object server can rely on the integrity of
this identity and permission information and make object-specific policy-enforcement
decisions as required. With the assumed proper operation of the kernel, the information is
correct and was provided by the system’s Security Server. Each object server, whether in or
out of the kernel, has a very simple enforcement operation that is easy to test and verify.
Other enforcement related processing in the kernel is straightforward processing which binds
information to relevant structures and reports the bound information correctly.

The Security Server is the central point in the system where all policy decisions, the most
complicated and critical part of any secure or safety-critical system, are made. If the system’s

25

External Object Server tasks

Service-
Kernel Boundary Object-3 . Se::;
. Service-1
Obiect3 > A Service-2
, Service1 |00
Client Object-1 » = Service-2
Task) Service-3
Service
Checks

Permission
Checks /

Y

Access Vector
Cache

s
welp [dentity and Permission Information Flow

4=]PC Connections
<— Permission Check

Figure 4: External Object Server Control

security policy cannot be assessed for correctness in the context of the single Security Server,
it is highly unlikely that the security policy could be assured correct in any other
implementation.®

The following sections discuss various aspects of the specific changes that were made to the
Mach kernel.

4.1.2.3 Additional Identifiers To support the split of enforcement from policy decision, it is
necessary to bind identifiers to all kernel objects. Within the Security Server, the identifiers
are bound to policy-specific attributes such as user name, data type, security level, etc. In the
kernel’s policy-enforcement operations, the identifiers are simply numbers associated with
objects that are to be passed as parameters to permission checks. This makes the split
between enforcement and policy very clean. The kernel and other server enforcement software
is completely independent of the security policy. This makes it possible to use the same kernel
and applications in systems that must operate according to very different security policies.

The list of objects that were labeled with security identifiers includes:
» Tasks (SSID),

n Ports (TSID), and
s Memory Cache Objects (TSID).

4.1.2.4 Access Vectors For the kernel or any object server to actually enforce a policy
decision, it is necessary for the enforcement software to have access to current permission

3 We recognize that there are multiple aspects of many system control policies and that not all of them should be
centralized in all systems. What we are referring to here is the basic security policy which defines the fundamental
operation of a system. Specific servers are free to extend this base policy. For example, a file system server is the
proper place for a Discretionary Access Control (DAC) policy such as Access Control Lists (ACLs).

26

information at each point where a security fault may occur. The permission information is
provided in the form of an access vector which is computed based on the relevant (SSID,
TSID) pair of identifiers. Each access vector defines the current state of permissions that the
SSID has to all operations supported by the object bound to the TSID.

The structure of access vectors within the prototype is based on the two aspects of the control
mechanisms: the IPC and object specific services. Figure 5 shows this basic two-part
structure of an access vector. The fields in the IPC portion of the access vector are common to
all access vectors because all services are accessed via IPC operations. The service part of the
access vector, however, is viewed as a union of all possible object-specific access vectors. The
addition of other service vectors has no impact on the kernel as service checks are always
done in the context of the specific object.

Access Vector

I IPC Permissions I Service Permissions I

v
l Send, Receive, etc. | Object-Specific Service Control l

Figure 5: Access Vector Structure

This approach results in very simple, easy-to-assure enforcement software. It consists ofa
simple test of the appropriate field of an access vector. This approach is also very easy to
extend to include the specification of control over application level objects as additions to the
system’s security policy.

Because all access vectors include the associated IPC permissions, the kernel continues to be
the enforcer of the IPC permissions for all object accesses on the system. This means that the
kernel—the unbypassable system element—is capable of enforcing the system security
policy’s definition of allowed task interactions.

4.1.2.5 Interface Extensions Another aspect of the prototype kernel work is the modification
of the Mach kernel interface. A key requirement levied on the prototype work was that all
changes to the Mach kernel interface would maintain backward compatibility with the
existing interface. To satisfy this requirement, all changes to the interface are in the form of
one of two types of extensions:

1. Extensions to make security relevant information visible to tasks, and
2. Extensions to support the kernel-Security Server interactions. These interactions
resolve security faults and respond to policy state changes within the Security Server.

In making security relevant information visible to tasks, eight new entries were added to the
kernel interface. Each is closely associated with an existing kernel interface and differs only
in that extra parameters are accepted or provided. The additional entries are:

s Allow the creation of kernel entities, tasks, ports, and memory cache objects with
specified identifiers, for example task create secure and mach_port._allocate_secure.

» Allow applications to obtain identifier and access information about kernel entities, for
example mach_msg secure and mach_port_type.secure.

27

All of the existing kernel interfaces remained syntactically the same, though their operational
semantics may be affected by the policy denying the required permissions.

The extensions to support the kernel-Security Server interactions consist of one outcall from
the kernel to the Security Server and additional kernel services used by the Security Server.
The single new outcall is used by the kernel when it needs to obtain an access vector to
complete the processing for a security fault. The thread causing the security fault is forced to
wait until the response is provided by the Security Server. The kernel provides the Security
Server with the appropriate (SSID,TSID) pair and indicates which permission is being
checked. The Security Server responds with the same pair of identifiers and the current state
of the associated access vector. In addition, the Security Server passes back a cache control
vector and a notification vector. The cache control vector is used by the Security Server to
instruct the kernel not to cache certain parts of the returned access vector. It is needed to
support security policies in which accesses can be revoked. The notification vector is used by
the Security Server to instruct the kernel to send a notification if a certain permission is being
checked. It is needed to support the use of security policies which determine the current
permissions based on the history of previous accesses to the associated objects. The response
from the Security Server is sent on the thread’s Remote Procedure Call (RPC) reply port
which is controlled by the kernel.

Two additional services were added to the kernel’s host object, accessible on the generally
available host port.* These additional services allow the Security Server to:

1. Register the port which the kernel uses to send permission requests to the Security

Server, and
2. Tell the kernel to flush all or part of its access vector cache.

The Security Server uses the first new service to notify the kernel that it is operational and to
identify the port to use for sending permission check requests. Prior to the point in time,
during system startup, when the Security Server becomes operational, the kernel must be able
to make permission decisions on its own. As part of the prototype development, a list of the
permissions for the operations done during system startup was developed and integrated into
the kernel as the initial state of the access vector cache. This means that the initial operation
of the system is done in agreement with this limited security policy statement. This part of
the design is important to help establish the integrity of the system’s initial state which is a
key issue in the operation of any secure or safety-critical system. The system could disable all
permission checks until the Security Server is operational. It is better, however, to specify
correct operation even during startup and ensure that permission checking is always enabled.

The Security Server uses the second new kernel service to control the state of the kernel
access vector cache. This facility allows the prototype kernel to support Security Servers
which implement a variety of dynamic security policies where access permissions change
during the operation of the system for any number of policy-controlled reasons.

4.1.3 LOCK6

This section discusses the LOCKS6 microkernel security controls. Many aspects of the LOCK6
system’s control approach were motivated by research done during the DTMach and DTOS

4 With the base Mach control concept these operations would have to be split between the host privilege port and the
host port. The prototype relies instead on the policy-defined control to specify which tasks in the system are allowed
to request the specific operations.

28

programs described in Section 2.3.1.2 and Section 4.1.2. The general control approach is very
similar to that described for the DTOS system. The implementation details are quite
different, but the general control philosophy for both can be summed up in the following
general rules which were established in the original LOCK work:

» Build the system on the smallest possible number of primitives implemented in the
smallest amount of code. This makes it possible to carry out reasonable assurance on the
real system.

s Integrate the control over the primitives at the same layer of the system where the
primitive is implemented. This makes it impossible to bypass the control mechanisms.

a Provide strong separation between the policy decision and the enforcement of the policy
decisions. This makes the system inherently more flexible. The implementation ensures
that the operations it provides are controllable and that the security policy can focus on
defining the minimum set of permissions required for the system to operate.

In LOCKS, as in DTOS, since nearly all system operations are implemented on the IPC
facilities, this means that the focus of the system control is on providing control over the IPC
facilities.’ The issue of what to control is determined by the operational semantics of the
LOCKS IPC facilities and the view that if there is a kernel operation that is accessed by any
user code, then the system’s control mechanisms must allow the policy writer to specify which
subjects are allowed to access the service and which are not. To make this possible, each
process is given a Subject Security Context, (SSC), and each IPC channel is given an Object
Security Context, (OSC). Within the LOCKS kernel, the policy enforcement processing makes
a permission check on each object access to determine if a given operation is to be permitted.
The enforcement logic provides the appropriate SSC and OSC values to the security policy
which returns the relevant permissions information.® If the permission is granted, the
requested operation’s processing continues. If the permission is not granted, the requested
operation’s processing is terminated at that point.

As in many message based systems, the LOCK6 IPC channels may be used by applications to
represent specific abstract objects which have object specific services implemented by an
object server process. The LOCKS6 control approach utilizes the extensible control concept
defined in the DTOS program. This allows a system security policy to be extended to include
the specification of control over the object specific services when the object service is added to
the system. The object specific policy enforcement logic is provided in server interface library
software which is generated from a server interface specification. When the IPC channel is
established, the client subject’s permissions to the IPC channel and associated object are
bound to the channel. On each use of the channel, the LOCK6 kernel enforces the IPC
services and binds the permission information to the request. The object server interface
library software enforces the object specific aspect of the permission based on the permission
information provided by the kernel. This provides a very efficient means of providing
permission information directly to the server.

5The operations that are not accessed via IPC are limited to direct system traps which are controlled utilizing the

basic control services as in the IPC operations.
6 For efficiency of operation, the permissions are cached so that it is not necessary to access the actual security policy

on each check.

29

4.2 Microkernel Security Controls Applied to DBMS Systems

This section discusses how DTOS microkernel security controls might be applied to DBMS
systems. On this project, two types of DBMS access control were investigated: IBAC and
MAC. The objective was to understand how the DTOS access control mechanisms can be used
to develop a high assurance version of DBMS access control.

The fundamental requirement for using the DTOS access control mechanism to control access
to an object is that the object must be registered with the DTOS kernel. The mechanism for
registering an object is the mach_port.allocate request. When a port is allocated to an object,
the kernel is responsible for creating the port and controlling access to it; the security server is
responsible for making security decisions based on the security context of the requesting task
and the target object; and the application server is responsible for enforcement of application
specific security decisions made by the security server. This assignment of responsibilities is
illustrated in Figure 6. The application server is also responsible for supporting any
additional application specific security checks that the security server is not aware of.

For the DBMS example, the application server is that portion of the DBMS that manages
DBMS objects. In the following sections we explore what these objects and their application
specific security attributes might be. For this approach to work, it must be the case that all
requests to access the objects are made with the security context of the client. How this might
be done is discussed in a later section.

———————
- 6. Perform i

. [e e : application 1}
Client __;""53"‘ Beceive | application [} specific access }
Server Fontrol based on |

i

access vector
i and client SID i

[o e
1. Send request } o~ . A o g . - v -
to Port l If (Client, Port) access allowed, delive
T o i s S it W
message, access vector. and client SID _ 4
— .- . —— - - ——_ - -

4

Security
Server

DTOS

Microkernel |<=m=m===m=—=—oT=——=—=== =
r;. Return (Client, Port) access vectox:‘

Figure 6: DTOS Security Mechanisms.
The Security Server decides what accesses a client has to a specific port. The access vector
returned contains an IPC portion, that the microkernel uses to determine if the message can
be sent, and an application specific portion, that is configurable for each application and that
the application uses to enforce its own policy.

4.2.1 Relational DBMSs

This section discusses how DTOS security controls can be applied to relational DBMS systems.

4.2.1.1 |BAC for Relational DBMSs

30

The standard IBAC controls provided by a commercial RDBMS are described in Section 2.3.2.

The DTOS access control mechanisms could be used to implement a higher assurance IBAC
policy that controls access to the DBMS named objects mentioned in Section 2.3.2: tables,
views, stored procedures, sequences and packages. Whenever any of these objects is created,
the DBMS application server would be responsible for requesting that a corresponding port be
allocated for the object, and for maintaining the binding between a named object and its
associated port.

When a client needed to access one of these named objects, the access would be via the
assigned port. There are two levels of granularity at which the client’s access to the DBMS
named objects can be controlled.

At the kernel level, domain and type attributes can be used to enforce course grained control.
Named objects with certain types may not be accessible at all to clients in certain domains.
That is, no send/receive rights to the port and hence no access to the object would be allowed.
For example, accounting types could be set up that accounting domains would have access to,
but DBMS clients in other domains would not. This feature would support certain types of
roles that require portions of the database to only be accessible from those roles.

To provide this feature in an effective manner, the microkernel OS would have to support
adding domains and types dynamically, and for each domain and type added, updating the
security policy in the Security Manager appropriately. The current version of DTOS does not
provide this capability. In addition, the client must be running in a domain that carries its
security context, that is, a generic server domain will not work. Since multithreaded servers
are now commonly used, a mechanism to dynamically change the security context of a process
would be most appropriate. As the server changed threads, its security context could be
changed to reflect the security context of the client associated with the new thread. DTOS
does not currently support this capability.

Any more fine-grained IBAC control cannot be performed by the DTOS kernel control
mechanisms. The DBMS application server must provide this control. At the level of the
DBMS, the operations that the application server controls would be:

s for tables: ALTER, DELETE, INDEX, INSERT, REFERENCES, SELECT, UPDATE
» for views: DELETE, INSERT, SELECT, UPDATE

n for stored procedures: EXECUTE

» for sequences: ALTER, SELECT

The application specific bits in the DTOS access control vector would be defined based on
these operations as shown in Figure 7.

DBMS DAC system privileges would have to be treated in a slightly different manner since
these privileges are associated with a database rather than a mamed object in the database.
One approach might be to define the database itself as an object and register it with the
Security Server. When a user attempted to perform a system privileged operation, the
application server would check with the Security Server asking for the user’s permissions to
the database object. The application specific bits of the access vector returned would then
contain the user’s system privileges to the database.

Since the IBAC policy can be changed at the discretion of the owner of an object or another
user who has been granted the appropriate privilege, a mechanism must be included that

31

IPC Permissions DBMS DAC Permissions

Send

Receive
Alter
Delete

Figure 7. DTOS Access Vector for IBAC Support
The application specific bits of the access vector contain the IBAC permissions that the client

has to the particular object.

allows the Security Server to be notified of modifications to the policy. For example, if the
DBA adds a user and decides to allow that user access to certain named objects, then the
Security Server must be notified so that it can update its tables to allow these accesses. This
is true for both users and roles. (The policy would be that a user has access to an object if the
user is specifically identified as having access or is in a role that has access.) At this point,
conceptually the Security Server must maintain a matrix of allowed accesses that is indexed
by subject security id (including domain, user, role, ...) and object security id (including name,
type, ...). If IBAC is to be supported by the Security Server at this level of granularity, then
there is potentially one column for every user on the system and one row for every object on
the system. This could result in an extremely large and sparsely populated matrix.
Techniques would have to be introduced into the Security Server to handle such data
structures efficiently.

Rather than implement the entire IBAC policy using the Security Server, it might be possible
to identify portions of it that are most critical, and change the least, such as DBA permissions,
and just use the Security Server for these.

What has been gained by putting this IBAC control matrix into the Security Server rather
than keeping it in the DBMS server? The main benefit is that the DBMS Server is simplified
and the access control decision software is isolated so that it can be more easily assured. The
DBMS Server must still enforce the access control decision, however, and a subverted DBMS
Server could completely ignore the decision supplied by the Security Server. To prevent this
from happening, the DBMS Server must be assured to always enforce the decisions correctly.
If the DBMS server is a large, complicated piece of code, this may be difficult to do. One
approach might be to decompose the DBMS Server into a component that accesses the data
and a component that supplies the other DBMS functionality. The access component could be
smaller and could be assured to properly enforce any access decisions. The access component
would have to include things like locking capability, versioning, and concurrency control.
There would also have to be a mechanism that passed the access compénent the correct
security context of the user client making the request. This could not be passed via an
untrusted portion of the DBMS. The point to note is that even if you break the DBMS Server
up into smaller components, you must still assure any components that have access to data
that is released to a client or received from the client to be entered into the database. These
components could conceivably store data and pass it out to another client that did not have
access. For example, the Oracle DBMS managers might be a start at providing some

32

decomposition, but a communication mechanism that did not use System Global memory
would have to be developed.

42.1.2 MAC for Relational DBMSs In current COTS Secure DBMS products, security levels
are assigned on a row-by-row basis. That is, each row in a table has an associated level. The
table itself becomes a multilevel object. The DTOS control mechanism does not directly lend
itself to supporting a policy like this since the objects that are being controlled in this case are
rows and assigning a port to each row in the database is not feasible or practical.

Partitioning tables by row level in the manner that is used by Oracle’s OS MAC mode may be
a possibility. However, since the DTOS kernel only enforces controls on send/receive access to
a port, the kernel cannot provide any help in enforcing a MAC policy on the DBMS objects.
The difficulty is, as mentioned before, the DTOS kernel has no knowledge of what can be sent
or received via the port. If you have send access on a port that represents an object, then the
kernel does not know if you are using that send to read the object or modify the object. It is up
to the DBMS application server that maps objects to ports to enforce the semantics of the
application. Partitioning the tables according to level might help the DBMS server enforce the
policy, by, for example, making use of the Security Manager to make access control decisions,
but it is still up to the server to enforce the decisions made by the Security Manager.

A form of non-MLS mandatory access control could be supported by DTOS using types and
domains to enforce strong separation between databases. Each database would have its own
separate types and domains. Only users in the appropriate domains would be allowed to
access the corresponding database objects. In addition, roles that involve read-only access to
the database could be enforced in this manner. This type of separation has been successfully
demonstrated on the LOCK DBMS program [22]. However, this would require additional
support in DTOS for dynamically creating new domains and types. In particular, it would be
useful to be able to create domain/type templates for a subsystem that could then be
instantiated whenever a new subsystem was created.

4.2.2 Object Oriented DBMSs

The issues involved in supporting MAC for an MLS OODBMS, such as TOP, are very similar
to the issues involved in supporting MAC for a RDBMS. Just as rows can have separate levels
and tables can thus be multilevel, attributes in an object can have separate levels and objects
can become multilevel. In TOP, the object can be partitioned into its single level
L-instantiations which are then stored at their own level. For the DTOS control mechanisms
to be able to support such an architecture, the L-instantiations of each object would have to be
treated as full objects in DTOS and given their own security ID. The Security Server would
then be able to make access decisions based on the client user's security context and the level
of the various L-instantiations.

As shown in Figure 6, the Object Manager would still need to enforce these decisions. In TOP
a user is presented with views of the data in the database that are appropriate for the user’s
level. The advantage of an OODBMS is that the code that constructs these views could run in
the context of the user. This would allow the user’s security context to be attached to all
requests to view an object so that the Security Server would have the right context for making
decisions. Such an architecture might provide a much easier and more natural way to develop
a high assurance MLS DBMS that the relational approach.

33

DAC for OODBMSs could be supported in a manner similar to that discussed for RDBMSs.
Again the advantage in the OODBMS approach is that the code that requests access to objects
will most likely already be running with the user’s security context so that requests for access
can be properly addressed by the Security Server. The security server would need to be aware
of each type of object and the methods that can be invoked on that object. Flexibility would
need to be added to the Security Server to support adding new objects with new methods.

34

Section 5

Lessons Learned and Future Directions

This section will discuss lessons learned on the SDDM program and possible directions for
future research in areas related to microkernels and DBMSs.

5.1

Lessons Learned Summary

The following points summarize the main conclusions relative to using DTOS control
mechanisms for a DBMS.

The DTOS control mechanisms work at the level of granularity of objects. In particular,
this implies that to be able to use the DTOS control mechanisms to control access to a
data element, the data element must be contained in an object that has the same
security context as the data element. Objects in DTOS are defined by allocating a port to
represent the object. If the security context is relatively fine-grained, this may require
many small objects and corresponding ports.

Object granularity is determined by the policy that you want to enforce.

For the DTOS control mechanisms to apply to a relational DBMS IBAC policy, the
objects might be tables, views, stored procedures, sequences and packages. That is, each
table is an object and so on. For the DTOS control mechanisms to apply to a DBMS MAC
policy, an object could only contain data elements that are all at the same level. Note
that if we support both policies, then table, sequence and package objects might have to
be partitioned into smaller objects that are single level. Views and stored procedures
could receive a level and would not have to be split. To maintain global table constraints,
it would be necessary to have some trusted subject that has access to all items in the
table. Splitting a table and then having to put it together again to check global table
constraints could be a major performance hit.

The DTOS kernel can only control access to an object based on rights to the port
associated with the object. These port rights only control whether the requester can use
the port to send/receive messages to/from the object. The particular service requests
that can be sent are object specific and control on whether the requester can make a
particular service request is enforced by the Object Manager (that is, the application
server) for the particular object.

The DTOS control mechanisms work at the level of gramilarity of processes. In
particular, access to an object by a DBMS process running in its own security context,
but in response to a request from a DBMS client, cannot be controlled by DTOS based on
the security context of the client.

The object manager needs to enforce the bulk of the access control policy. If the system is
to have high assurance, this implies that the object manager must be small or else
decomposable into a portion that enforces the policy and can be highly assured and other
less-assured components.

35

To allow an application server to make full use of the DTOS control mechanisms and the
services provided by the Security Server, a number of enhancements would have to be made to

the Security server. These include:

» To support OODBMSs the interface to the Security Server would need to be enhanced to
allow the application to define new types of obiects with new methods associated with
them and then to define the security policy that should be enforced on these objects.

» To support a policy like a DBMS DAC policy via the Security Server would require
support in the Security Server for storing and manipulating sparse access control
matrices.

» A less ambitious enhancement would to allow templates for Type Enforced subsystems
to be defined that would allow the application to create separate instances of the
subsystem that were protected from one another via Type Enforcement. This might be
useful, for example, for strong separation of databases.

5.2 Future Directions

This section will discuss future directions of the technology discussed in this report.

5.2.1 DBMS Development

Development of a research prototype high assurance MLS DBMS on the DTOS microkernel is
currently underway at Penn State University under the direction of Dr. Thomas Keefe [28].
This work includes architecting a DBMS system for the MLS environment and development
of several trusted servers, including a trusted buffer manager, a trusted scheduler and a
trusted log manager. Control of covert channels is a major concern on this effort, and it should
be noted that the DTOS control mechanisms do not provide any help in this area.

This research should provide additional insights into the adequacy of DTOS, and its
predecessor Flux/Fluke, controls for DBMS systems in the future.

5.2.2 Web-based DBMS Servers

A future trend in the development of distributed DBMS systems is the use of web-based
technology to present the interface to the DBMS system. Research into the possibility of
adding controls to the web-based server to increase overall database security should be

conducted.

5.2.3 Java

The Java Platform [13] is being developed by JavaSoft, a division of Sun Microsystems. Sun is
publishing the specifications for the components of the Java Platform to encourage its
adoption as an open solution for object-oriented, distributed networking.

Java is being widely adopted for Internet/Intranet applications.
The Java Platform has three components:

36

» the Java Language
s the Java Virtual Machine
a the Java Application Programming Interface (API)

Programs written in the Java language are compiled to an intermediate bytecode that the
Java Virtual Machine understands. The Java Platform supports a number of built-in security
features:

s Java is a “safer language” than C or C++.

- Java is a strongly typed language. This allows many potential errors to be
identified at compile time.

- Pointer arithmetic is not allowed. In particular, it is not possible to access arbitrary
memory locations by redefining a pointer, either accidentally or on purpose.

— Garbage collection is performed automatically. This prevents “memory leaks” from
corrupting the system.

- Array bounds checking is done at runtime. Hence, it is not possible to overflow a
stack and end up somewhere in memory where you don’t belong.

» The Java runtime environment includes a verifier that can be run over Java bytecode to
ensure that the bytecode is “correct”. Correct in this context includes checking that the
bytecode has the proper format and that certain language rules, such as typing rules,
are not violated. The purpose of the verifier is to protect against malicious bytecode that
has been obtained from an untrusted source.

a The Java Platform includes a Security Manager class that can be used to control the
access to system resources such as files, network connections, threads, etc. Each Java
application can define its own Security Manager that implements its own Security
Policy. Java applets are constrained by the Security Manager of the application in which
they are invoked, usually the Web browser.

s The Java API includes interfaces for encryption, digital signatures, and authentication.

Sun Microsystems is currently developing chips that implement the Java Virtual Machine in
hardware. Sun has also defined a Java OS that consists of the Virtual Machine and certain
base Java language classes. The Java OS runs directly on hardware and could be compared to
a microkernel.

Since Java provides a complete object-oriented environment that can include its own base OS
and since it has been promoted as a “secure” system, there are a number of research areas
that would be of interest to investigate. These include:

s A comparison between the DTOS control mechanisms and the Java control mechanisms.
In DTOS the Security Manager exists as a separate process. It provides the basic checks
for the kernel and for any applications whose policies have been incorporated into the
Security Manager. In Java the Security Manager is a class that presents an API that is
called when security checks need to be made. There are certain security related system
calls that always call the Security Manager, but since each Java application can define
their own Security Manager, the results of these checks can be application dependent. In

37

addition, each application can extend the Security Manager to provide whatever
additional checks and APIs are necessary. This comparison would identify the strengths
and weaknesses of each approach.

» An investigation of the “security” of the Java Platform as a “wrapper”. Java code is
executed within the context of the Java Virtual Machine. If the Virtual Machine is
running on another OS and the Java code can either subvert the Virtual Machine or
“breakout” of it, then malicious Java code might be able to subvert the security
mechanism. This investigation would involve a complete security analysis of the Java

Platform to determine its security vulnerabilities.

» A study of whether a security policy similar to a Type Enforcement policy could be
implemented using the Java Security Manager. This might include defining classes in
Java that have associated domains and types.

s A design of a Java Object Oriented DBMS that made use of the Java security features.

38

Section 6
Notes

6.1 Acronyms

ACL Access Control List

API Application Programmer Interface

DAC Discretionary Access Control

DBA Database Administrator

DBMS Database Management System

DTMach Distributed Trusted Mach

DTOS Distributed Trusted Operating System
IBAC Identity Based Access Control

IPC Inter-Process Communication

LOCK Logical Coprocessing Kernel

MAC Mandatory Access Control

MLS MultiLevel Secure

MMU Memory Management Unit

OODBMS Object Oriented Database Management System
OS Operating System

OSC Object Security Context

OSF Open Software Foundation

RDBMS Relational Database Management System
RPC Remote Procedure Call

SCC Secure Computing Corporation

SDDM Supporting a Secure DBMS on the DTOS Microkernel
SID Security Identifier

SNS Secure Network Server

SSC Subject Security Context

SSID Source Security Identifier

39

SSO System Security Officer

TCB Trusted Computing Base

TCSEC Trusted Computer Security Evaluation Criteria
TO7 Trusted Oracle 7

TOP Trusted ONTOS Prototype

TSID Target Security Identifier

VMM Virtual Machine Monitor

40

Appendix A
Bibliography

[1] Martin Abadi and Leslie Lamport. Composing Specifications. ACM Transactions on
Programming Languages and Systems, 15(1):73-132, January 1993.

[2] W. E. Boebert and R. Y. Kain. A Practical Alternative to Hierarchical Integrity Policies.
In Proceedings 8th National Computer Security Conference, pages 18-27, Gaithersburg,
MD, October 1985.

[3] E. F. Codd. A Relational Model for Large Shared Databanks. Communications of the
ACM, 13:377-387, 1970.

[4] Oracle Corporation. “Trusted ORACLE Administrator’s Guide, Version 1.0”. Number
6610-10-0392. Oracle Corporation, Redwood City, CA, 1992.

(5] Todd Fine and Spencer E. Minear. Assuring Distributed Trusted Mach. In Proceedings
IEEE Computer Society Symposium on Research in Security and Privacy, pages 206-218,
Oakland, CA, May 1993.

(6] Todd Fine and Edward A. Schneider. Developing a “Policy Neutral” Control Policy for a
Microkernel. Technical report, Secure Computing Corporation, 2675 Long Lake Road,
Roseville, Minnesota 55113-2536, November 1994. Submitted for publication.

[7] Bryan Ford and Mike Hibler. Fluke: Flexible y-kernel Environment Application
Programming Interface Reference. Technical report, Department of Computer Science,
University of Utah, Salt Lake City, UT, May 1996. DRAFT.

[8] Bryan Ford, Mike Hibler, Jay Lepreau, Patrick Tullmann, Godmar Back, Shantanu Goel,
and Steven Clawson. Microkernels Meet Recursive Virtual Machines. Technical report,
Department of Computer Science, University of Utah, Salt Lake City, UT, May 1996.
DRAFT - UUCS-96-004.

[9] Bryan Ford, Mike Hibler, and Flux Project Members. Fluke: Flexible u-kernel
Environment Design Principles and Rationale. Technical report, Department of
Computer Science, University of Utah, Salt Lake City, UT, April 1996. DRAFT -
CONFIDENTIAL - DO NOT DISTRIBUTE.

[10] Li Gong. A Secure Identity-Based Capability System. In IEEE Symposium on Computer
Security and Privacy, pages 56—63. IEEE, 1989.

[11] PA. Karger and A.J. Herbert. An Augmented Capability Architecture to Support Lattice
Security and Traceability of Access. In Proceedings of the 1984 IEEE Symposium on
Security and Privacy, pages 2-12, April 1984.

* [12] Paul Ashley Karger. Improving Security and Performance for Capability Systems.
Technical Report 149, University of Cambridge, Cambridge England, October 1988.

[13] Douglas Kramer. The Java Platform. Technical report, JavaSoft, Mountain View, CA,
May 1996. whitepaper.

41

[14] Keith Loepere. Mach 3 Kernel Interfaces. Open Software Foundation and Carnegie
Mellon University, November 1992.

[15] Keith Loepere. OSF Mach Kernel Principles. Open Software Foundation and Carnegie
Mellon University, final draft edition, May 1993.

[16] Mary E. S. Loomis. Object Databases:The Essentials. Addison-Wesley, Reading, MA,
1995.

[17] Spencer E. Minear. Providing Policy Control Over Object Operations in a Mach Based
System. In Proceedings of the Fifth USENIX UNIX Security Symposium, pages 141-156,
Salt Lake City, Utah, June 1995.

(18] MITRE. MLS Microkernel DBMS Design Analysis. Technical report, MITRE, February
1996. DRAFT.

[19] NCSC. Trusted Computer Systems Evaluation Criteria. Standard, DOD 5200.28-STD,
US National Computer Security Center, Fort George G. Meade, Maryland 20755-6000,
December 1985.

{20] NSA. “Trusted Database Management System Interpretation of the Trusted Computer
Systems Evaluation Criteria (TDI)”. Technical Report NCSSC-TG-021, NCSC, Fort

George G. Meade, MD, April 1991.

[21] O. Saydjari, J. Beckman, and J. Leaman. LOCK Trek: Navigating Uncharted Space. In
IEEE Symposium on Computer Security and Privacy, pages 167-175. IEEE, 1989.

[22] SCC. LOCK DBMS Final Report. Technical report, SCC, 1996.

[23] Marvin Schaefer, Valerie Lyons, Paul Martel, and Antoun Kanawati. TOP: A Practical
Trusted ODBMS. Technical report, ONTOS, Lowell, MA, 1995. whitepaper.

[24] Secure Computing Corporation. DTOS Kernel Interfaces Document. Technical report,
. Secure Computing Corporation, 2675 Long Lake Road, Roseville, Minnesota 55113-2536,

April 1995. DTOS CDRL A003.

[25] Michael Stonebraker. Operating System Support for Database Management.
Communications of the ACM, 24(7), July 1981.

[26] Andrew S. Tanenbaum. Modern Operating Systems. Prentice Hall, Inc., Englewood
Cliffs, NJ, 1992.

[27] Bruce J. Walker, Richard A. Kemmerer, and Gerald J. Popek. Specification and
Verification of the UCLA Unix Security Kernel. Communications of the ACM,
23(2):118-131, February 1980.

[28] Andrew Warner, Qiang Li, Thomas Keefe, and Shankar Pal. The Impact of Multilevel
Security on Database Buffer Management. 7o appear., 1996.

[29] William A. Wulf, Ellis Cohen, William Corwin, Anita K. Jones, Roy Levin, C. Pierson,
and F. Pollack. HYDRA: The Kernel of a Multiprocessor Operating System.
Communications of the ACM, 17(6):337-345, June 1974.

#.5. GOVERNMENT PRINTING OFFICE: 1897-509-127-47160

42

MISSION
OF
ROME LABORATORY

Mission. The mission of Rome Laboratory is to advance the science and
technologies of command, control, communications and intelligence and to
transition them into systems to meet customer needs. To achieve this,
Rome Lab:

a. Conducts vigorous reséarch, development and test programs in all
applicable technologies;

b. Transitions technology to current and future systems to improve
operational capability, readiness, and supportability;

c. Provides a full range of technical support to Air Force Material
Command product centers and other Air Force organizations;

~ d. Promotes transfer of technology to the private sector;

e. Maintains leading edge technological expertise in the areas of
surveillance, communications, command and control, intelligence,
reliability science, electro-magnetic technology, photonics, signal
processing, and computational science.

The thrust areas of technical competence include: Surveillance,
Communications, Command and Control, Intelligence, Signal Processing,
Computer Science and Technology, Electromagnetic Technology,
Photonics and Reliability Sciences.

